Selasa, 03 Agustus 2010

Pesawat Sinar X

Pesawat sinar-X adalah pesawat yang dipakai untuk memproduksi sinar-X. Untuk dapat menghasilkan suatu pencitraan sinar-X diperlukan beberapa instrumetasi yang baku sebagai berikut :

1. Tabung sinar-X

Tabung sinar-X berisi filament yang juga sebagai katoda dan berisi anoda. Filamen terbuat dari tungsten, sedangkan anoda terbuat dari logam anoda (Cu, Fe atau Ni). Anoda biasanya dibuat berputar supaya permukaannya tidak lekas rusak yang disebabkan tumbukan elektron.

2. Trafo Tegangan Tinggi

Trafo tegangan tinggi berfungsi pelipat tegangan rendah dari sumber menjadi tegangan tinggi antara 30 kV sampai 100 kV. Pada trafo tegangan tinggi diberi minyak sebagai media pendingin. Trafo tegangan tinggi berfungsi untuk mempercepat elektron di dalam tabung.

3. Instrumentasi kontrol

Sistem kontrol berfungsi sebagai pengatur parameter pada pengoperasian pesawat

sinar-X. Instrumentasi kontrol terbagi menjadi 5 modul yaitu :

a. modul Power supplay (Catu daya DC )

b. modul pengatur tegangan (kV)

c. modul pengatur arus (mA)

d. modul pengatur waktu pencitraan (S)

e. modul Kendali sistem

f. catu daya AC dari sumber PLN.

Penyerapan Sinar-X

Penyerapan sinar-X oleh suatu bahan tergantung pada tiga faktor sebagai berikut.

a. Panjang gelombang sinar-X

b.Susunan obyek yang terdapat pada alur berkas sinar-X

c. Ketebalan dan kerapatan obyek

Jika kV rendah maka akan dihasilkan sinar-X dengan gelombang yang panjang dan sebaliknya dengan kV tinggi maka panjang gelombang sinar-X akan semakin pendek. Penyerapan sinar-X oleh suatu bahan juga tergantung pada susunan obyek yang dilaluinya, sedangkan susunan obyek tergantung pada nomor atom unsur, misalnya nomor atom alumunium lebih rendah dari nomor atom tembaga. Ternyata penyerapan sinar-X alumunium lebih rendah dari penyerapan sinar-X oleh tembaga. Timah hitam mempunyai nomor atom yang besar, maka daya serap terhadap sinar-X juga besar. Ketebalan dan kerapatan suatu unsur bahan juga berpengaruh terhadap penyerapan sinar-X. Bahan yang tebal akan lebih banyak menyerap sinar-X dibanding dengan bahan yang tipis, tentunya pada unsur yang sama. Penyerapan sinar-X oleh tubuh manusia pada proses photo Rontgen dapat dijelaskan sebagai berikut. Tubuh manusia dibentuk oleh unsur-unsur yang sangat komplek. Oleh sebab itu, penyerapan sinar-X oleh tubuh pada proses Rontgen tidak sama, misalnya tulang akan lebih banyak menyerap sinar-X dibanding dengan otot atau daging. Bagian tulang yang sakit atau daging akan lebih besar menyerap sinar-X dibanding kondisi normal. Usia juga akan menjadi penyebab perbedaan penyerapan sinar- X. Tulang orang tua yang telah kekurangan kalsium, maka penyerapan sinar-X akan berkurang dibanding tulang anak muda.

Terjadinya Sinar X

Pada peristiwa terjadinya tumbukan tak kenyal sempurna antara elektron dengan atom anoda (targed) akan terjadi dua hal sebagai berikut.

1. Terjadi radiasi yang dikenal dengan “ bremstrahlung” yaitu elektron yang mendekati atom targed (anoda) akan berinteraksi dengan atom bahan anoda, tepatnya dengan elektron luar atom tersebut. Ia mengalami perlambatan sehingga mengeluarkan radiasi. Radiasi ini memiliki aneka ragam panjang gelombang, oleh karena itu proses bremstrahlung dapat dialami elektron berulang kali, sehingga spektrum radiasi ini bersifat kontinyu.


Peristiwa tumbukan antara electron dengan atom anoda dapat dilihat pada

Gambar 3.



Gambar 3. Tumbukan Antara Elektron dengan Anoda

2. Elektron yang mendekati atom didalam anoda berinteraksi dengan elektron dalam atom tersebut, berupa tumbukan tak kenyal sempurna, akibatnya elektron anoda terlepas dari kulitnya. Atom tertinggal dalam keadaan bereksitasi yang dalam keadaan tidak stabil. Maka terjadilah (dalam waktu 10-8 detik) pengisian kekosongan itu oleh elektron-elektron yang lebih luar. Perpindahan kulit yang luar ke kulit yang dalam disertai pancaran radiasi dengan panjang gelombang tertentu, maka radiasi ini bersifat diskrit. Interaksi elektron dengan atom anoda dapat dilihat pada Gambar 4.

Gambar 4. Interaksi Elektron dengan Atom Anoda

2. Dasar Percobaan Sinar X


Peristiwa terjadinya sinar-X diawali dari percobaan Heinrich Hertz pada tahun 1887 dengan menggunakan tabung hampa yang berisi katoda dan anoda. Katoda dan anoda dihubungkan dengan sumber listrik E. Pada tegangan, E, yang rendah tidak ada arus elektron dari katoda ke anoda yang dapat dilihat dari galvanometer. Pada saat katoda disinari gelombang pendek elektromagnetik ternyata dari katoda keluar elektron menuju anoda yang diamati dari galvanometer. Arus yang terbaca di Galvanometer adalah arus yang sangat kecil dalam order mikro ampere. Peristiwa di atas disebut dengan efek foto listrik. Kecuali disinari dengan gelombang pendek elektron dapat keluar dari katoda dengan cara dipanaskan sehingga terjadi emisi thermis. Jadi dengan cara dipanaskan atau diberi gelombang pendek elektromagnetik katoda dapat memancarkan elektron lebih banyak.

Makin pendek gelombang elektromagnetik yang menumbuk katoda, maka makin besar arus yang mengalir dan sebaliknya makin panjang gelombangnya, makin kecil arus yang terbaca di galvanometer. Hal demikian dapat dipahami karena bila gelombang elektromagnetik panjang gelombangnya makin pendek berarti frekuensinya makin besar dan nerginya juga makin besar.

Gambar 1. menunjukkan alat foto listrik.






Karakteristik gelombang elektromagnetik ditentukan oleh panjang gelombang, frekuensi, dan kecepatan. Kecepatan rambat gelombang elektromagnetik di udara untuk semua panjang gelombang adalah sama yaitu sama dengan kecepatan dalam ruang hampa c = 3 1010cm/det.

C = v × λ (1)

dengan :

c : Kecepatan rambat dalam hampa (cm/det)

v : Frekuensi gelombang (cycle/det)

λ : Panjang gelombang, (cm)

Pemancaran energi radiasi elektromagnetik oleh sumbernya tidak berlangsung secara kontinyu melainkan secara terputus-putus (diskrit), sehingga berupa paket yang harganya tertentu yang disebut dengan kuanta/foton. Besar energi kuanta tergantung pada frekuensi gelombang.

E =h ×v (2)

dengan :

E : Energi foton, (eV)

h : Tetapan Max Plank, (Joule/det)

v : Frekuensi gelombang, (cycle/det)

Sinar X

1. Pengertian Dan Sejarah Sinar X

Sinar-X ditemukan oleh Wilhelm Conrad Rontgen seorang berkebangsaan Jerman pada tahun 1895. Penemuanya diilhami dari hasil percobaan percobaan sebelumnya antara lain dari J.J Thomson mengenai tabung katoda dan Heinrich Hertz tentang foto listrik. Kedua percobaan tersebut mengamati gerak electron yang keluar dari katoda menuju ke anoda yang berada dalam tabung kaca yang hampa udara. Pembangkit sinar-X berupa tabung hampa udara yang di dalamnya terdapat filament yang juga sebagai katoda dan terdapat komponen anoda. Jika filamen dipanaskan maka akan keluar elektron dan apabila antara katoda dan anoda diberi beda potensial yang tinggi, elektron akan dipercepat menuju ke anoda. Dengan percepatan elektron tersebut maka akan terjadi tumbukan tak kenyal sempurna antara elektron dengan anoda, akibatnya terjadi pancaran radiasi sinar-X. Sinar –x adalah gelombang elektromagnetik yang mempunyai panjang gelombang 10-8 -10-12 m dan frekuensi sekitar 1016 -1021 Hz.sinar ini dpat menembus benda-benda lunak seperti daging dan kulit tetapi tidak dapat menembus benda-benda keras seperti tulang,gigi,dan logam. Sinar x sering di gunakan di berbagai bidang seperti bidang kedokteran, fisika, kimia, mineralogy, metarulugi, dan biologi. Sinar-x merupakan gelombang elektromagnetik atau disebut juga dengan foton sebagai gelombang listrik sekaligus gelombang magnit. Energi sinar-x relative besar sehingga memiliki daya tembus yang tinggi. Sinar-x tebagi atas 2 (dua) bentuk yaitu sinar-x karakteristik dan sinar-x brehmsstrahlung.
Proses terbentuknya sinar-x diawali dengan adanya pemberian arus pada kumparan filament pada tabung sinar-x sehingga akan terbentuk awan elektron. Pemberian beda tegangan selanjutnya akan menggerakkan awan elektron dari katoda menumbuk target di anoda sehingga terbentuklah sinar-x karakteristik dan sinar-x brehmsstrahlung

Sinar-x yang dihasilkan keluar dan jika beinteraksi dengan materi dapat menyebabkan beberapa hal diantaranya adalah efek foto listrik, efek hamburan Compton dan efek terbentuknya elektron berpasangan. Ketiga efek ini didasarkan pada tingkat radiasi yang berinteraksi dengan materi secara berurutan dari paling rendah hingga paling tinggi. Radiasi ionisasi akan mengakibatkan efek biologi radiasi yang dapat terjadi secara langsung ataupun secara tidak langsung.